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ABSTRACT due to manufacturing errors) do not create any prob-

lems in this representation. The zero reference

A simplified description of robotic manipulator position method has been used for closed form 114.15]
Is in terms of its zero reference position. It re- as well as Iterative [16] inverse kinematic robot
quires the specification of the joint axes directions solutions.
and the coordinates of points locating the joint axes In this paper, which is based upon reference
in the base coordinate system. This description can [17] we develop formulations for robot dynamics by
be learned quickly and is not prone to the errors of using an extended zero reference position descrip-
interpretation. It has previously been used to de- tion. These formulations Include: Inverse dynamics
rive closed form inverse kinematic solutions for which is the problem of determining actuator drive
simple manipulators as well as to develop efficient forces or torques to sustain the specified end-effec-
numerical solutions for general manipulators. This tor motion (section 3); and direct dynamics (or simu-
paper develops manipulator dynamics in an extended lation) which is the problem of determining the end-
zero reference position description. The recursive effector motion resulting from the application of
Newton-Euler formulations for the problems of in- specified forces or torques by the actuators (section
verse and direct dynamics are presented in this 4). In view of their relative efficiency, only the

* Ipaper. recursive Newton-Euler formulation using the zero
reference position method is discussed here; refer-

1. INTRODUCTION ence (17] should be consulted for the details of the
Lagrangian formulation.

The dynamics of robot arms has been considered
by several investigators (1-101. A comon formula- 2. ZERO REFERENCE POSITION DESCRIPTION
tion is based upon the Denavit and Hlartenberg kine-
atic description of spatial chains [11-13] and the In the zero position description [14.15],a suit-
use of either 4x matrices or 3x3 matrices along with able configuration of the manipulator is designated

3x1 column vectors for kinematic and dynamic analyses as the zero reference position where all of the joint
[1-8]. Lagrangian [1,2,7], recursive Lagrangian [5, variables have zero values (Fig. 1). Inthisteroref-
81, as well as recursive Newton-Euler [3,4,6] ap- erence position the unit vectors along the revolute
roaches have been used for dynamic formulations, or prismatic Joints (Uok along the kth joint, k - I
Methodologies lesding to explicit computations of to 6) as well as the position vector of a point on
actuator forces or torques have been considered by the axi, of each Joint (0ok, k - I to 6) are given
using dual matrices [91 and Kane's dynamical equa- in the base coordinate system. In Fig. 1. k S i

- tions 110]. for a typical revolute joint and k j for a typical
The aforementioned 4x4 matrices have twelve non- prismatic Joint. In addition, the position vector

trivial entries. In multiplying two 4x4 matrices,
multiplications with the trivial elements (zero and usO
one) can be avoided during the programming stages, Z U10
or the concept of matrix partitioning can be usee to
achieve some computational economy. Ignoring such u O
possibilities, references [5,81 report that the 3x3
matrix and 3xl vector based Lagrangian formulation is O0
more than twice as efficient than the 4x4 matrix
based Lagrangian formulation. Among other approaches,
explicit methods appear to be the most efficient but0
these become dependent upon the configuration of the V U'"

manipulator. For configuration Independent formula- i

S ftions, the recursive Newton-Euler formulations ap-
pear to be most efficient.

An alternate kinematic description of robot X
arms, called the zero reference position description, hO
has been used by Gupta [14]. It can be mastered Figure 1. The zero reference position 11. Jrn quickly and it is not prone to the errors of inter- description for typical revolute axis i,

pretation by the user. Special cases such as when primtic axis j and end-effector.
the adjacent joit axes become nearly parallel (e.g. V7.1

8 "°



* Poh of a reference point h on the hand and two per- be established "oily 114,16).
"endicular unit vectors through the point h (pref- For dynamic formulation, additional data con-
erably an axial and a transverse unit vector. uoO cerning the dynamic properties of the manipulator is
and uot) are also given. All of the Joint variables also defined in the zero reference position. Coin-
are met to zero at this reference position. The cident pointa .rad defined .t the ceter-
unit vectors uok (k - I to 6). oa and uot. and of the kth joint such that t
position vectors Qok (k - I to 6) and poh completely the kth link and p+l ts the body point of the

define the kinematic structure of the ianipulator. (k+l)th link. The following quantities are then
At a general position. the governing kinematic equa- defined at the zero position.
tions of the manipulator can be written as follows -o P t
(14-17]. body vector of the kth link from k

"6 Sk the center of mass Ok  kfrmPk-1 to

11 (D(e8 k' 6'?k 9.0 ' [D H1 (Is) !.k body vector of the kth klink from the
k-I center Of mas Gk to P k (note thatk-I ok - Sok + dok) k

The 4x4 matrix ID] represents the displacement of weight of the kth link
the hand from its zero reference osition to the k

current position. The current position of the hand symetric inertia matrix of the kth link

is normally a part of the trajectory specification. [I' I bout the translated base coordinate
The 4x4 matrix ID(k, sk , uok, Qok)] represents a ~ 3x3 system through the mass center Gk when
rotation of m.ouot Eo of o the arm is at zero positions

inout k a s trnslation ofamount skr
with respect to the invariant line vector (uok, Qok).
I.e. the vector Uok passing through the poiat QTokh vectors uk  bk+i k and -k+l and the time
In a partioned form, this matrix can be written as varying inertia mtrix~I[I at the current (non-zero)

follows [13). configuration are computed as follows.

?ok) 'k u I IR {u (28
R~ek.'~ok~ ~ -k1  Y -ok (s

[D(ek. 
5k. !ok, 9ok)] - - - - - (1b)

4.4 0 1{bk+ I. I {bo k+l) (2b)

where { )m [R.1 ' Ok+l) (2c)

[R(ek. Uok )  - [I) + [Uok)sine + [Uk]2(l-cose) {dk+l " [IR] {do~k+I (2d)

1411- [R ] 1 O.k+l I 1R k (2e)

rz uy
ok ok where [Rk] Is the rotation matrix of the link k+l

from Iti zero position to the current position. It

V 

k

-uok uok-

In equation (3). the rotation matrix [R(ei hI)]
X1 u - (R - 1j {Qok is the principal 3x3 minor of the 4x4 displacement

matrix [D(6t, st. Loi. poi)I contained in equation

(b); it represents a rotation 61 about the axis uoi.

If the ktf. joint I. revil'utt, then sk - 0; If the
kth joint it prIsMt1i, then rk - 0. 3. INVERSE DYNAMICS - ACTUATOR DRIVE FORCES

An extension of the above description 117] for OR TORQUES
dynamil analysis is as follows. The unit vectors

?ok (k - I to 6). u., and uot are known as before. The kth joint variable is defined as qk such
However. instead of the reference position vectors that for a revolute Joint qk - Ok. and for a prismat-

9ok for points on the joint axes, reference body ic Joint qk - *k" It is assumed that the solution

vectors bO,k.l (k - I to 6) are defined such that of the problem of the inverse kinematics is availablIr.

tO,k+1 is tne oody vector of the link k+l and it Thus for the specified rotation matrix of the hand

connects the center of the kth joint to the center !H, position vector of a reference point h on the

of the (k+l)th joint. The position vector of the hand, velocity vh of the point h. and angular vell.

joint center on the kth axis in the zero reference city vector wh ;r skew-symmetric matrix 1[,h of the

position can be computed by adding the body vectors hand, the corresponding joint values 0. (0 (q3 .

b0 2 , b0 3 - .... bOk The unit vectors Uok (k - I to q2 l "*;, q6)T) and joint rates Q are available.
6). U0a and ust and the body vectors bok (k - 2 to 7) For inverse kinematic accilerations the follo,

completely define the klnematlc structure of the Ing equation, vhich is used to compute the joint

manipulator. A correspondence among the joint var- rates o is differentiated.

able* using the aforementioned zero reference pool- v-hl
tion description or the common D-H description can 1l.2 (J] M9) )

" *. .*."." ...... !.... . .. . .....



Im equation (4), tJ is the 6x6 velocity Jacobian d if the kth joint i rtoluto 0..
mtrix of the manipulator and its elements are cor- k'
tion (4a) to differentiated to obtain equation (4b). k the collar is on the kth link

-4b ak + qkUk if the kth joint is prismatic
, ,. u ] ('il. + (. -. I (b) and the collar is on the

% (k+l)th link (7)

where ah and ah are linear and angular accelerations r
of the hand and [3] is a 6x6 matrix whose elements c if the (k-l)th joint is revolute
are the derivatives of the elements of the Jacobian -k

matrix (3. A recursive method to compute [] is ck  if the (k-I)th joint Is prismatic %

discussed in reference [17]. Equation (4b) in then Pi and the collar ts on the kth link
solved for the joint accelerations I. k r-k1

When the velocity and acceleratlon of the hand + q U if the (k-I)th joint is

" as well as the corresponding data at the joint level k k-k-i

I* (i.e. Q. , ') are known, the dynamics of the mani- prismatic and the collar is on
pulator cin Be formulated as follows. A recursive the (k-1)th link (8)
process for the computation of the actuator forces
(or torques) starts from the 7th link. At each th
step, the angular velocity and acceleration of aforces (or

particular link, and the linear acceleration of Its torques) do not depend on which link carries the
mass center are computed. These values are thenused collar of the prismatic joint. The joint reactions,
to compute the inertia force and inertia moment act- however, are affected by this fact. Giso

Ing on the link. The joint forces and torques are
then computed by writing the dynamical equilibrium obtained from the acceleration of the mass center
equations (D'Alembert's principle) for that link. Gk+l by using the relation for two points in the same W

In particular, when the recursive process is body (equations 9, 11) and also for coincident points
at the kth link (k 7, 6, a, ... , 2), the computation belonging to different bodies (equation 10). For
is as follows prismatic joints, note the Coriolis acceleration term

in equation (10).

I _ -qk if the kth joint is revolute k+1 Gk)-

k -kl if the kth joint t prismatic i k+ 1 X"-k k*

(5) kn+1 (9)
where wk is the angular velocity of the kth link. l " Pk Gk+l

Equation (5) is differentiated to compute the angu-
lar acceleration Ok. _

Uk kwk ) uk  & k+1 if the kth joint is revolute

c. if the kth joint is revolute I-I

k+1 q - 2,

-k
if the kth joint Is prismatic (6)

if the kth joint is prismatic (10)

The next step in the computation of the acceleration
of the mass center of the kth liii4. Before that,. -'j X CPk)- V k 1)
however, two vectors P_7G and Ckp' (Fig. 2) are k -k kP
defined as follows.

u t  At this point the linear acceleration of the mass
center Gk as well as the an.ular velocity and accel-
eration of the kth link are known and the inertia
force and moment acting on this link are computed in
the base coordinate system as follows (see Appendix).

~k~k~G~(12)0!k ~ Gk  . ..

where 7k is the inertia force acting on the kth link
. and mk is the mass of the kth link.

LINK. ,., %--tk) t+.kl[k )- [ 1 () (13)
LINK K k

where k Is the inertia moment acting on the kth link, esM lln, [ ]Is the skew symmetric angular velocity -

matrix, and [Ii] is the time varying inertia matrix r
Vt.3with respect to the translated base coord. system at G.

*I A7
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figure 3 shows the kth link with all reactive. grav- by the 3x3 rotation matrix 14_11tJ defimed by *qMa-
itational. and inertia forces and moments acting on tion (3), Equation (3) Is also rearranged as follos
the link. [.l-t " [!(ek" Uok)] IlkJt 117

"T' -,In light of the above definitiona, all of the eua-

' tions (5-16) are premultiplied by the matrix
h * an follows

a.(O u/ ) a, 18) "L

eq (5): " k -au

- R(OkUok) k+l 1)

eq (6): OC !(ek u )Q+* (9

$RN6.1)a. a- :k -

dok

k t LN eq (7): (Gkpk- dok (20)

Figure 3. Dynamic equilibrium of link k. d A + q uok

Using the D'Alembert's principle, the force and mo-
ment equilibriu (dynamic) equations for the kth link c
are written as follows €ok

qk-! k k (14) eq (8): (plGk) (21)!k !k (1)k - ok (1

k k kk-lo.k-I
lk-i = k -l k + k-lPk X Pk- Pk-~k X (k + k

)

) eq (9): a a k(IS)l eq 19): ' 1".+- " + l X (-k+1 X (Pk  Gk+ 1 ) *)

where lk-I and Tk_ I are the reaction force and moment
ef erted by the (k-l)th link on the kth link at point * a
Pk-l- The weight of the kth link is Vk. The actuator - X (nk'k+) (22)

forces (or torques) are then computed as follows

T
fk-1 " Tk-I "k-I actuator torque if the R(Bk,Uok)apk+1(k-I)th joint is revolute k

fN_ N u- actuator torque If the eq (10): a k- R(ek.Uk)a +I - q uok
k- I k-1 (k-1)th joint Is prismatic Pk Pk

2 qkw-k X uok (23)

Equations (5-16) constitute a recursive set of rela-
tions for computing all of the actuator forces or k a - k -
torques. This formulation requires that body vectors eq (11): aG k - - X ( x(G kp k -
.uk . ' k as well as the time varying inertia k k
matrix [_j] be computed at the current position (eq. k ,
(2)). This process also requires the computation of ok X (rkk) (2)
the rotation matrix [Rk] In equation (3). Computa-

* tion of these quantities in equations (2) and (3) ,
involves a large number of arithmetic operations. eq (12): F k - .a (25)
The algorithm is relieved from these excessive compu- k
tations as follws. Let us define • superscripted r a G • G {
vectors eq (13): {k ) - [ ok k (26)

* a * J . .k. a G G. t- t
4I' 9G 'C kt• Pk) (Pk-1l%) p, 0k where [k1 " 1] - [ 1j[I tRk is the k

time invariant inertia matrix at the zero reference
S!k' -k' c' configuration of the arm.

by preaultiplying the corresponding vectors eq (14):% k ! 8 c ~~1lNc-~ k (27)
, .k, fGk' (CGkP ), (Pk~lGk), pkk  k_ eq (15): Tk-1 [R(6kl,.o,k1l)](T - ?k +

'-k, O k, !k Tk kii k k) kp !p

!k- NIc - !k j' jk lk) X - (pi1Gk)* x (% + F)) (28)

............. ........ ........................ ................. +....;... ......................... k _k _
<Z- "~~~~~.. .-.".. -".................. - . . --................ ....... ".'--"."".... .. ..... .
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unit vector Lt rmains tangent to the above-mtioned
S().() circle. Therefore

k- k-] "-o.k-l 1h .3

Equations (18-29) are then used instead of equations 7 h i 6 sin r (30)
(5-16) for the recursive computation of actuator

foce (rtoqus) n odfidequations the corn- Zh a 6 corn *
pututlon of the body vectors and inertia matrices of

links at their current position is not required; 4

only the vectors and inertia matrices defined in the Coo 0

zero reference position are used. j

The efficiency of the above formulation is u ant U cog j (31)
directly related to the total number of arithmetic 

-sin sin and t co (

(i.e. multiplications m, additions a) and trig- -sin coo -sin
onometric (t) operations. The formulation presented
in this section has the following computational com-

plexity. Angle t changes from 0 to 2m , where *- 0 indi-

r. (136 m + 118a + 2t)+p(139m + 118a + 2t) cates the top point on the circle. For a smooth
r* (36 astart and stop of the band on the trajectory, the

I(t) variation is selected according to the follow-
where rn Iso the numbe ofn ont joint andetoy ph is

Where r is the number of revolute joints and P ais ing cam type scheme 122-23]. The total time T for

the number of prismatic Joints. For a 6-R manipula- the trajectory Is divided into a hlf-cycloidal . "'
tor, the computational complexity equals 816 m + start (Cl) of duration TI , a constant velocity me-
708 a + 12 t. As a comparison, the Newton-Euler sent of duration T2. and a half-cycloidal stop (C2)
formulation of the reference [4) requires 851 m of duration T3. The transfer * are determined to
+ 739 a + 12 t computations. insure continuity of Wi, while I is already continu-

In a numerical example, the above inverse dyna- ous. This leads to the start segment angle change
mic formulation is used to compute the actuator OI - 2W T1/(T + T2)- constant velocity segment angle
torques which maintain a specified trajectory for a change *2 - 4w T2/(T + T2) and stop segment angle
6-R manipulator (Fig. 4). Tables I and 2 contain change *3 - 271 T3/(T + T2). For Tj " T2 " T3 - 3
kinematic and dynamic description of this manipula- sec., the following equations for "1 *, * are ob-
tor in Its zero reference position shown in Fig. 4. tained.

0< t<3

in- .s

1 3 (32)
* ;-6 cos

Vt 1 t
*---- sin

(33)
141

* - (t -3)

~1 12 3 16 < t < 9.._-

• " . sin (9 - t)

6. 66 3

Then the velocity and acceleration specifications of
the hand are as follows

Figure 4. The zero reference position of 4
an Industrial manipulator (Table 1). (

The trajectory of the hand Is specified os follows. 0
The point h of the hand Is to move on a circle of
radius 6" in a plane parallel to the base YZ plane
and its center located on the base I axis a x- 34".
The axial unit vector u5 makes an angle of radians

......

. . . . . . . . . . . . . .
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Table 1 Link and joint information for a PUMA type manipulator in zero-positionI',
Type of -.-

k the k th Uck 0k +1 0 k+ 0 k +1

I (0,0,11) (050) (0.50) (0.10,0)

2 R (0,1,0) (8,2,0) (9,-2,0) (17,0,0)

3 R (0,1,0) (0,0,-9) (0,0,-8) (0,0,-17)

4 R (0,0,1) (0.0,-1) (0,0,1) (0,0,0)

5 R (0,-1,0) (0,-1,0) (0,1,0) (0,0,0)

6 R (0,0,-1) (0,0,-3) (0,0,-2) (0,0,-5)

ut  (0,-1,0)

U (0,0,-1)

Table 2 Mass and inertia information for the manipulator of Table 1 in zero-position

k k  (xx k  11y,) k  (izx) k  (I x) k  I xz) k  Iyz) k
k (lb) (Ib-in-xec) )' .. . x"

2 10 .230 .005 .230 0 0 0

3 16 .069 1.453 1.394 0 0 0

4 12 1.405 1.585 .034 0 0 0

5 1 .001 .001 .0001 0 0 0

6 1 .001 .0001 .001 0 0 0

7 6 .069 .069 .01 0 0 0

the trajectory (0 < t < 9 sec). In Figures Se and
0 5b, the joint variable q4 (i.e. 6 ) makes a complete

v 6 coa 9 (36) rotation (2n), while the other joints (ql - q3 -h q5 - q6) return to their starting values. The joint
1-6 P sin V variable q3 (e3 ) experiences very small changes using

the execution of this particular trajectory. The
computed drive torques for the joint actuators are
plotted In Figures Ba and 8b. The joint actuators

(37) 2 and 3 are most affected by the gravitational load-
h  

- ing. The values of the joint torques at the begin-
ning and the end of the trajectory correspond to
their static equilibrium values.

In the various numerical examples, it was ob-
0 served that the inverse dynamic computations of the

ah -b *2 sin P + 6 ' cos I (38) joint drive torques took approximately 0.003 CPU
-6 seconds per set when these were programed in double

-6 coS 4 - 6 *sin J precision Fortran an an IBM 3081.
The details of the inverse dynamics In the zero

After solving the inverse kinematics problem for reference position representation by using the La-
the joint 9. 9. Q, the joint actuetor forces or grangian formulation are presented in reference (171.
torques are co uted by using equatio (18-29). Fig- Although these are too involved to present here, the

urea (5-7) show the variations of Q, Q. and Q along i 6 development is analogous to that in reference [8].
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D C DYNAICS (SIULATION) G . X ( X ) + )

Direct dynamics or simulation is the problem of
determining the position, velocity and acceleration Rt(qU) *

forces (or torques) are known as functions of time. a .. k

It is now discussed in the context of the zero ref- k R (qu k + +

erence position description. • p k k 'kk X ok

In general the equations of motion fora 6 D.O.F.

manipulator can be written as 
(43)

[H(Q)] 4 q. ~ ~ ( -" +1 + tk+1 X + "g+1 X (PkGk+) ) %

G~ kl+ _,lX(

w h e r e 
o k k.. X>

H(Q) = 6 x 6 non-singular, symmetric inertia 
'k X (Pk'k+l) (44)

matrix

c(q j, 9) - 6 x 1 vector containing "centri- These equations (40-41, 20-21, 42-44) are used for k

fugal" and "Coriolis" effects from 2 to 7 to compute w*, a* and at for all of the
links. Equations (25-29) are then used to compute

(Q) 6 x I vector containn ravity and end- the six joint actuator forces (or torques) fk as

effector loading effects linear functions of *4t. Thje system of linear equa-
f - 6 x I vector of actuator forces (or torques) tions (39) is then completely defined by using the

known values of the actuator forces on the right hand

In the problem of direct dynamics, the joint side. On the left hand side on this equation, there

forces f are known. Also, at the current integration is a 6x7 matrix (the kth row is fk) where the first

step, the manipulator state variables Q and 4 are six columns correspond to the matrix H and the sev-

available. The linear system in equation (3§) is enth column corresponds to the vectors C and g in

solved for Q. The joint accelerations "0 are then equation (39). To reduce the number of arithietic

integrated numerically to compute the next state onerations needed to define and solve this sytem

variables Q and Q. The Newton-Euler formulation Is of equations, the following observations were util- " -

utilized to define the matrix H and vectors C and g ized.

in equation (39). The formulation to define-these I. 0% G k and Mk are functions of "ii.

quantities is similar to that of the problem of the i - 1, 2, .. .o-1 Therefore the columns k, k+l,

inverse dynamics in section 3, except for the follow- .... 6 of the corresponding 3x7 arrays are null col-

ing modifications. umns. The vector and scalar operations on these null

I. Since the position, velocity and accelera- columns are avoided.

tion of the hand are not known, the recursive process 2. The inertia matrix [1f6x6 is a symmetric

to compute the angular velocities and accelerations matrix and therefore only the lower triangular part

of the links and the linear accelerations of their of this matrix needs to be computed. In actual im-

mass centers starts from the base link (Ist link) to plementation this means that vector and scalar op-

the hand (7th link). erations on columns k, k+l, ... , 6 of all 3x7 arrays

2. The joint accelerations Q are not known. in equations (25-29) are avoi-led.

Therefore the terms which are affected by the joint 3. Since [H] is a symmetric matrix, an effici-

accelerations are defined as linear functions of . ent method such as triangular decomposition [24] can
These terms for the kth link are: ., be used to solve the systen of equations (39).

C ~ The formulation discussed above defines 6 second

U. T and the derived actuator force (or torque )M_ , k an th dervedactutorforc (o orue)order, ordinary differential equations as follows , "

fk (29). In other words these vectors in data stor-
age have the dimensions of 3 x 7 (Qk has the dimen- !" •
sions 1 x 7). The columns 1-6 represent the coeffi-~ - f(9. 9. ) (44)

cients of "q1l to q6 , and the seventh column repre-
sents the constant terms. Simulation is basically the numerical solution of the

W hen the above modifications are incorporated initial value problem involving 6 second order dif-

in equations (18-27), the equations (18-29. 22-24) ferential equations (44). In terms of the state

are rearranged as follows to change the recursion variables (0.4) this system becomes a system of 12

k first order differential equations. An efficient """
[(q qkuo] if the kth joint predictor-corrector integration scheme is used in

is revolute the computer program to compute the state variables

-kk1 t Q andQ [17].
Rt(qkuo)Wk if the kth joint is The number of operations required in the simuls-

prismatic (40) tion process prior to the integration step equals

2468 multiplications, 1879 additions and 12 trigono-

metric evaluations. In the numerical examples test-

kt ed, it was observed that each cycle of simulation,
(q kt [,k + q ok + q-kk X iok] ncluding the integration step took approximately

ll " 0.018 CPU on an IBM 3081 using the double precision

t q ) (41) Fortran.
k'Uo ak (sed upon the zero reference position descrip-

tion of robot arms. the inverse kinematics, inverse
dynamics and direct dynamics (simulation) have been

V. 9incorporated into a general purpose FORTRAN computer

_.-. .' _'_ . -.-. .. . . . ... " " " -," ". . . . . . .• . ."." . ." "".... . ,;---' . . .. ... . . - ''." -
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"'k'b 19tb (ik(t)Itb (-k~tb

I1G~t)Jtb, (C-k~tb

or simply. in the translated base coordnate= system

_k G1k I(t)1 (4 - G~)

Although the forms of the generalized Euler's equa-

tions are similar In the body system and the trans-
lated base coordinate system 11], the inertia ma-
trix Is time Invariant in the former while it Is a
function of time in the latrter.
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